Integrable vs. nonintegrable geodesic soliton behavior

نویسندگان

  • Oliver B. Fringer
  • Darryl D. Holm
چکیده

We study confined solutions of certain evolutionary partial differential equations (PDE) in 1 + 1 space–time. The PDE we study are Lie–Poisson Hamiltonian systems for quadratic Hamiltonians defined on the dual of the Lie algebra of vector fields on the real line. These systems are also Euler–Poincaré equations for geodesic motion on the diffeomorphism group in the sense of the Arnold program for ideal fluids, but where the kinetic energy metric is different from the L2 norm of the velocity. These PDE possess a finite-dimensional invariant manifold of particle-like (measure-valued) solutions we call “pulsons”. We solve the particle dynamics of the two-pulson interaction analytically as a canonical Hamiltonian system for geodesic motion with two degrees of freedom and a conserved momentum. The result of this two-pulson interaction for rear-end collisions is elastic scattering with a phase shift, as occurs with solitons. The results for head-on antisymmetric collisions of pulsons tend to be singularity formation. Numerical simulations of these PDE show that their evolution by geodesic dynamics for confined (or compact) initial conditions in various nonintegrable cases possesses the same type of multi-soliton behavior (elastic collisions, asymptotic sorting by pulse height) as the corresponding integrable cases do. We conjecture this behavior occurs because the integrable two-pulson interactions dominate the dynamics on the invariant pulson manifold, and this dynamics dominates the PDE initial value problem for most choices of confined pulses and initial conditions of finite extent. © 2001 Published by Elsevier Science B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesic Soliton Behavior

We study confined solutions of certain evolutionary partial differential equations (pde) in 1 + 1 space-time. The pde we study are LiePoisson Hamiltonian systems for quadratic Hamiltonians defined on the dual of the Lie algebra of vector fields on the real line. These systems are also Euler-Poincaré equations for geodesic motion on the diffeomorphism group in the sense of the Arnold program for...

متن کامل

Geometry and integrability of Euler–Poincaré–Suslov equations

We consider nonholonomic geodesic flows of left-invariant metrics and left-invariant nonintegrable distributions on compact connected Lie groups. The equations of geodesic flows are reduced to the Euler–Poincaré–Suslov equations on the corresponding Lie algebras. The Poisson and symplectic structures give raise to various algebraic constructions of the integrable Hamiltonian systems. On the oth...

متن کامل

Geodesic Distance in Planar Graphs: An Integrable Approach

We discuss the enumeration of planar graphs using bijections with suitably decorated trees, which allow for keeping track of the geodesic distances between faces of the graph. The corresponding generating functions obey non-linear recursion relations on the geodesic distance. These are solved by use of stationary multi-soliton tau-functions of suitable reductions of the KP hierarchy. We obtain ...

متن کامل

The Modified Tanh Method for Solving the Improved Eckhausequation and the (2+1)-dimensional Improved Eckhaus Equation

The modified tanh method is one of most direct and effective algebraic method for obtaining exact solutions of nonlinear partial differential equations. The method can be applied to nonintegrable equations as well as to integrable ones. In this paper,we look for exact soliton solutions of the improved Eckhaus equation and the (2+1)-dimensional improved Eckhaus equation. 2000 Mathematics Subject...

متن کامل

Shape changing and accelerating solitons in the integrable variable mass sine-gordon model.

The sine-Gordon model with a variable mass (VMSG) appears in many physical systems, ranging from the current through a nonuniform Josephson junction to DNA-promoter dynamics. Such models are usually nonintegrable with solutions found numerically or perturbatively. We construct a class of VMSG models, integrable at both the classical and the quantum levels with exact soliton solutions, which can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001